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Abstract

The driving-point impedance of a single-gap thin conductor strip, a model of the ribbon-and–pedestal of de-

vice package, mounted across the gap of a ridged waveguide has been derived using the induced EMF method. The

dyadic Green’s function for the ridged waveguide was derived to facilitate the analysis. An equivalent circuit

was developed which involved an infinite array of transformers representing the couplings between the conductor
strip and the waveguide normal modes. Numerical results for a typical example were also given, demonstrating a
remarkably smooth behavior of the driving-point impedance of the mount over a frequency range from 5.4 GHz to
25.4 G~z.

Introduction

Ridged waveguides have been used for many years in

microwave components and systems requiring wide band-

widths. Among such applications mounting structures
for solid-state devices are of our interest herelz~

A recent experimental investigation showed that mechan–
ical tuning ranges of 8.5–26 GHz and 14-28 GHz were
achieved with Gunn and IMFATT diodes, respectively,
mounted in the ridged-waveguide cavity3’! This
urged us to study the ridged-waveguide mounting struc-
ture theoretically as well”. The analysis presented in

this paper is an extension of the induced EMF method
previously developed for the rectangular waveguide

mounting structures’! The mounting structure con-

sidered here is illustrated in Fig.l(a), where the

packaged diode fits in the gap between the ridges ex-

tending uniformly to inf iriity in the z direction.

Neglecting the ceramic ring and replacing the ribbon-
and-pedestal of the package by a single-gap thin con-
ductor strip, as shown in Fig.l(b), we can derive the
driving-point impedance of the mount.

Analysis

We regard the thin conductor strip with a width w

and a gap g as a small antenna radiating into the

ridged waveguide. Since w is small, the current in the
conductor strip can be represented by

10, otherwise

where ~ is the y-directed unit vector. This current

excites fields which may be represented by an infinite
sum of the waveguide normal modes. The complete eigen-

value solution of ridged waveguide needed here has been
obtained by Montgomery. Quoting from his result, we

can write for the y component of the electric basis
field in the region 1, referring to Fig.1, as
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In equ. (4) kT is an eigenvalue
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and k Xln is the propa–

gation constant in the x direction of spatial harmonic
components in the region 1 associated with the eigen-
value. The amplitudes of these spatial harmonic com–

‘orients are ‘ln
and ~ln in equs. (2) and (3) and are

determined from the normalization condition by the
method described in Ref. 7. We retain in this analysis

only those modes which satisfy the msgnetic-wall-

boundary condition at the symmetry plane since the
current strip is at the center of the waveguide.

With the complete eigenvalue solution in our hand,

we can derive the dyadic Green’s function for the
ridged waveguide using Tai’s procedure. The $? com–
ponent of the Green’s function may be presented in
the form
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where k
TH

and k
TE

are the eigenvalues, ~H and rE are

the propagation constants of the TE and TM modes, re-
spectively, and k2=w2c,_Bo.

Substituting equa. (1) and (5) into

(6)

for TM modes, where kxln is defined by

U.J2



we obtain the electric field excited by the current in

the conductor strip.

For a gap with small w and g, we can assume a uni-
form voltage, V, across the gap, so that the gap field
is given by

xgap(li) = +(x)v(y)v(z)

1,
w

{

-—

v(x) =
~ixs;

arbitrary, otherwise

{

1, h-$sy~h+f

v(Y) = ~, along the conductor strip

{

1, .=Q

v(z) =
arbitrary, Z*Q

(7)

Apply@g the Lorentz reciprocity theorem to ~(~),
~(~), and E we have

gap’

r dv=$ JEdv
Vol ‘yEgap Vol Y Y

(8)

From equ. (8) we can derive the driving-point impedance,

ZR , seen at the gap terminals using the procedure de-

scribed by Eisenhart and KhanG.

Results are:
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The factor Kgn is the gap coupling factor. Simi-

hirlY, KsHnp and ‘5Enqare the conductor–strip coupling

factor for the TE and-TM modes, respectively.

Equations (10) through (13) can readily be repre-

aented by an equivalent clrcwi~.as shown in Fig.2.

The parallel connection of Zn as-shot.m-in Fig.3 gives

the driving-point impedance, ZR, in view of equ.(9).

In practice the frequency of operation is restricted
so that only the dominant TElo-hybrid mode propagates

while all other higher-order modes evaneace. Then,

z
H1

is resistive, ZHP (P22) inductive, ZEq (q>l) capac-

itive. For n21, the net effect of Z
Hp

and Z
Eq

is ca-

pacitive. In addition, KsHnl= O owing to small values

of ~ In for the dominant mode. Hence, the equivalent

circuit of Fig.3 reduces to the simple one.,shown in
Fig.4, where Zclo/2=(K

sH01/KgO)2(wUo/rH1) .’

Results of numerical computation for w=l.00, g=

0.50, h=O.90, al=l.75, a2=7.90, b1=4.85, b2:=3.05, b3=

1.80 (all are given in millimeters) are presented in
Fig.5. The solid and the broken curves represent the
real and the imaginary parts, respectively, of ZR (=

~+j~) Obtainedb equ.(g). The results demonstrate
a remarkably smooth behavior of ZR over a very wide

frequency range, which ia bounded by the higher-order-
mode resonances at about the cut-off frequencies of

‘Elo –hybrid (5.4 GHz) and TE30-hybrid modes (25.4 GHz).

The crosses and circles in Fig.5 represent the real and
the imaginary parts of ZR’ (= RR’ + j%’) clbtained from

Fig.4, where Zclo is the characteristic impedance of

the dominant mode. Comparison between ZR amd ZR’ gives

a justification for the use of the simplified equiva-
lent circuit in practical designs and analyses of

microwave circuits.

As the width of the strip decreases, the number of
eigenvalues required for computation increa~aes. Fig.6

is the plot of inductance, L, versus the strip width,

w, evaluated at 10 GHz for the previously cited dimen-
sions using a different number of eigenvalues. For w=

1.00 mm, eigenvaluea up to 300 GHz were required, giving

L=O.90 nH and C=O.03 pF (g=O.50 mm) with nS.4.

Conclusions

A ridged-waveguide mounting structure has been

analysed theoretically. The ribbon-and-pedles tal of
microwave diode package was replaced by a thin conduc-

tor strip with a gap, which was regarded as a small
antenna radiating into the waveguide. The driving-

point impedance was derived using the induced EMF meth–
od with the aid of the dyadic Green’s function for the
ridged waveguide which was also derived and presented.

Results of the analysis was put in the form of equiva-

lent circuit showing the couplings of the conductor

strip to the waveguide normal modes. The equivalent

circuit was then reduced to a simple one convenient for

use in practical deaigns and analyaes of microwave cir-

cuits. Numerical results obtained for a typical exam-
ple were alao given, demonstrating a remarkably smooth
behavior of the driving-point impedance of the mount
over a frequency range from 5.4 to 25.4 GHz.

Neglection of the package ceramic ring ia a major
limitation. However, the resulta presented. in this

paper will be useful for designs and analyses of vari-
oua broad-band microwave components involving small
devices as well as for characterization of these
devices.
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Fig.1.
&

Ridged–waveguide (b)
mounting structure.

(a) Cross section of an actual mount.

(b) Model used in the analysis.
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Fig.4. A simplified equivalent circuit.
Fig.3. An equivalent circuit of the driving–point

impedance of the ridged-waveguide mount.
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Fi~.5. Freauencv characteristics of the real and Fig.6. Inductance versus strip width. Inductance is
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