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Abstract

The driving-point impedance of a single-gap thin conductor strip, a model of the ribbon-and-pedestal of de-

vice package, mounted across the gap of a ridged waveguide has been derived using the induced EMF method.
dyadic Green's function for the ridged waveguide was derived to facilitate the analysis.

The
An equivalent circuit

was developed which involved an infinite array of transformers representing the couplings between the conductor

strip and the waveguide normal modes.

Numerical results for a typical example were also given, demonstrating a

remarkably smooth behavior of the driving-point impedance of the mount over a frequency range from 5.4 GHz to

25.4 GHz.

Introduction

Ridged waveguides have been used for many years in
microwave components and systems requiring wide band-
widths. Among such applications mounting structures
for solid-state devices are of our interest here!’?

A recent experimental investigation showed that mechan-
ical tuning ranges of 8.5-26 GHz and 14-28 GHz were
achieved with Gunn and IMPATT diodes, respectively,
mounted in the ridged-waveguide cavitys’? This

urged us to study the ridged-waveguide mounting struc-
ture theoretically as well. The analysis presented in
this paper is an extension of the induced EMF method
previously developed for the rectangular waveguide
mounting structures®’® The mounting structure con-
sidered here is illustrated in Fig.1(a), where the
packaged diode fits in the gap between the ridges ex~
tending uniformly to infinity in the z directiom.
Neglecting the ceramic ring and replacing the ribbon-
and-pedestal of the package by a single-gap thin con-
ductor strip, as shown in Fig.l(b), we can derive the
driving-point impedance of the mount.

Analysis

We regard the thin conductor strip with a width w
and a gap g as a small antenna radiating into the
ridged waveguide. Since w is small, the current in the
conductor strip can be represented by

I(R) ={

where § is the y-directed unit vector. This current
excites fields which may be represented by an infinite
sum of the waveguide normal modes. The complete eigen-
value solution of ridged waveguide needed here has been
obtained by Montgomery’. Quoting from his result, we
can write for the y component of the electric basis
field in the region 1, referring to Fig.l, as

o @ nmw B W W
¥, E:oAnCOSg;(y-ba)ﬁ(z 0, ~5Sx55
(@)

0, otherwise

- am,
eHy(R) = §=onlnkxlnCOSkx1nxcosba(y bs3) (2)
for TE modes and
— x nm nm
eEy(R) = §=1£ln bs coskxlnxcos€;(y—b3) (3)

for TM modes, where kx is defined by

In
Liy2

Z_MZ >_1'iT_
Kk _ v kT (ba) ’ kT T by %)
x1n
s nmyo _ 2 < o’
WGP ks k<,
In equ.(4) kT is an eigenvalue and kXln is the propa-

gation constant in the x direction of spatial harmonic
components in the region 1 associated with the eigen-

value. The amplitudes of these spatial harmonic com—

ponents are nln and Eln in equs.(2) and (3) and are

determined from the normalization condition by the
method described in Ref.7. We retain in this analysis
only those modes which satisfy the magnetic-wall-
boundary condition at the symmetry plane since the
current strip is at the center of the waveguide.

With the complete eigenvalue solution in our hand,
we can derive the dyadic Green's function for the
ridged waveguide using Tai's procedurea. The $9 com—
ponent of the Green's function may be presented in
the form
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where kTH and kTE are the eigenvalues, TH and TE are

the propagation constants of the TE and TM modes, re-
spectively, and k2=w2€0uo.

Substituting equs.(l) and (5) into

Ey(R) = ~jun, S ny(R/R')J(R')dv‘ (6)
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we obtain the electric field excited by the current in
the conductor strip.

For a gap with small w and g, we can assume a uni-
form voltage, V, across the gap, so that the gap field
is given by
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{1, h - %-s y<h+ %
v(y) = 0, along the conductor strip
1, z =0
v(z) ={arbitrar}’, z % 0

_ _ Applying the Lorentz reciprocity theorem to j(ﬁ),
E(R), and Egap’ we have

dv. = [ JE.dv (8)
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From equ.(8) we can derive the driving-point impedance,

ZR’ seen at the gap terminals using the procedure de-

scribed by Eisenhart and Khan®.

Results are:
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The factor Kgn is the gap coupling factor.

larly, X are the conductor-strip coupling

and K
sHnp sEngq
factor for the TE and TM modes, respectively.

Equations (10) through (13) can readily be repre-
sented by an equivalent circuit as shown in Fig.2.
The parallel connection of Zn as showm--in Fig.3 gives

the driving-point impedance, Z_, in view of equ.(9).

R
In practice the frequency of operation is restricted
so that only the dominant TElO—hybrid mode propagates

while all other higher-order modes evanesce. Then,

Z . is resistive, Z > (p>2) inductive, ZEq (qz1) capac-

H1 H

itive. For n2l1l, the net effect of Z and Z is ca-
Hp Eq

pacitive. In additionm, Kanlzo owing to small values

of nln for the dominant mode. Hence, the equivalent
circuit of Fig.3 reduces to the simple one_shown in
Fig.4, where ZC10/2=(K3H01/Kg0)z(wuo/I‘Hl) T

Results of numerical computation for w=1.00, g=
0.50, h=0.90, a1=1.75, a2=7.90, b1=4.85, b2=3.05, b3=

1.80 (all are given in millimeters) are presented in
Fig.5. The solid and the broken curves represent the
real and the imaginary parts, respectively, of ZR (=

RR + jXR) obtained by equ.(9).

a remarkably smooth behavior of Z

The results demonstrate
p over a very wide’
frequency range, which is bounded by the higher-order-
mode resonances at about the cut-off frequencies of
TElO—hybrid (5.4 GHz) and TE30—hybrid modes (25.4 GHz).

The crosses and circles in Fig.5 represent the real and
the imaginary parts of ZR' (= RR' + jXR') obtained from

Fig.4, where ZC is the characteristic impedance of

10

the dominant mode. Comparison between Z_ and ZR' gives

R
a justification for the use of the simplified equiva-
lent circuit in practical designs and analyses of
microwave circuits.

As the width of the strip decreases, the number of
eigenvalues required for computation increases. Fig.6
is the plot of inductance, L, versus the strip width,

w, evaluated at 10 GHz for the previously cited dimen—
sions using a different number of eigenvalues. For w=
1.00 mm, eigenvalues up to 300 GHz were required, giving
L=0.90 nH and C=0.03 pF (g=0.50 mm) with n<é4.

Conclusions

A ridged~-waveguide mounting structure has been
analysed theoretically. The ribbon-and-pedestal of
microwave diode package was replaced by a thin conduc-
tor strip with a gap, which was regarded as a small
antenna radiating into the waveguide. The driving-
point impedance was derived using the induced EMF meth-
od with the aid of the dyadic Green's function for the
ridged waveguide which was also derived and presented.
Results of the analysis was put in the form of equiva-
lent circuit showing the couplings of the conductor
strip to the waveguide normal modes. The equivalent
circuit was then reduced to a simple one convenient for
use in practical designs and analyses of microwave cir-
cuits. Numerical results obtained for a typical exam-—
ple were also given, demonstrating a remarkably smooth
behavior of the driving-point impedance of the mount
over a frequency range from 5.4 to 25.4 GHz.

Neglection of the package ceramic ring is a major
limitation. However, the results presented in this
paper will be useful for designs and analyses of vari-
ous broad-band microwave components involving small
devices as well as for characterization of these
devices.
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